4,172 research outputs found

    QCD angular momentum in Nā†’Ī”N \rightarrow \Delta transitions

    Full text link
    Nā†’Ī”N \rightarrow \Delta transitions offer new possibilities for exploring the isovector component of the QCD quark angular momentum (AM) operator causing the Juāˆ’dJ^{u - d} flavor asymmetry in the nucleon. We extend the concept of QCD AM to transitions between baryon states, using light-front densities of the energy-momentum tensor in transversely localized states. We calculate the Nā†’Ī”N \rightarrow \Delta transition AM in the 1/Nc1/N_c expansion, connect it with the Juāˆ’dJ^{u - d} flavor asymmetry in the nucleon, and estimate the values using lattice QCD results. In the same setup we connect the transition AM to the transition GPDs sampled in hard exclusive electroproduction processes with Nā†’Ī”N \rightarrow \Delta transitions, enabling experimental study of the transition AM.Comment: 7 pages, 1 figur

    Refinement of Under-Determined Loops of Human Prion Protein by Database-Derived Distance Constraints

    Get PDF
    Computational simulations of the conversion from the normal cellular prion (PrPc) to the scrapie prion (PrPSc) are usually based on the structures determined by NMR because of the difficulties in crystallizing prion protein. Due to insufficient experimental restraints, a biologically critical loop region in PrPc (residues 167ā€“171), which is a potential binding site for Protein X, is under-determined in most mammalian species. Here, we show that by adding information about distance constraints derived from a database of high-resolution protein structures, this under-determined loop as well as other secondary structural elements of the E200K variant of human prion protein (hPrPc), a disease-related isoform, can be refined into more realistic structures in the structural ensemble with improved quality and increased accuracy. In particular, the ensemble becomes more compact after the refinement and the percentage of residues in the most favourable region of the Ramachandran diagram is increased to about 90% in the refined structures from the 80 to 85% range in the previously reported structures. Our results not only provide significantly improved structures of the prion protein and hence would facilitate insights into its conversion in the spongiform encephalopathies, but also demonstrate the strong potential for using databases of known protein structures for structure determination and refinement

    Quantum Key Distribution with High Loss: Toward Global Secure Communication

    Full text link
    We propose a decoy-state method to overcome the photon-number-splitting attack for Bennett-Brassard 1984 quantum key distribution protocol in the presence of high loss: A legitimate user intentionally and randomly replaces signal pulses by multi-photon pulses (decoy-states). Then they check the loss of the decoy-states. If the loss of the decoy-states is abnormally less than that of signal pulses, the whole protocol is aborted. Otherwise, to continue the protocol, they estimate loss of signal multi-photon pulses based on that of decoy-states. This estimation can be done with an assumption that the two losses have similar values, that we justify.Comment: derivation made more detailed, 4 pages, RevTe

    Quantum Gambling Using Three Nonorthogonal States

    Full text link
    We provide a quantum gambling protocol using three (symmetric) nonorthogonal states. The bias of the proposed protocol is less than that of previous ones, making it more practical. We show that the proposed scheme is secure against non-entanglement attacks. The security of the proposed scheme against entanglement attacks is shown heuristically.Comment: no essential correction, 4 pages, RevTe

    Estimating sampling biases and measurement uncertainties of AIRS/AMSU-A temperature and water vapor observations using MERRA reanalysis

    Get PDF
    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be Ā± 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and > 30% dry over midlatitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations

    From Molecular Cores to Planet-forming Disks: An SIRTF Legacy Program

    Get PDF
    Crucial steps in the formation of stars and planets can be studied only at midā€ to farā€infrared wavelengths, where the Space Infrared Telescope (SIRTF) provides an unprecedented improvement in sensitivity. We will use all three SIRTF instruments (Infrared Array Camera [IRAC], Multiband Imaging Photometer for SIRTF [MIPS], and Infrared Spectrograph [IRS]) to observe sources that span the evolutionary sequence from molecular cores to protoplanetary disks, encompassing a wide range of cloud masses, stellar masses, and starā€forming environments. In addition to targeting about 150 known compact cores, we will survey with IRAC and MIPS (3.6ā€“70 Ī¼m) the entire areas of five of the nearest large molecular clouds for new candidate protostars and substellar objects as faint as 0.001 solar luminosities. We will also observe with IRAC and MIPS about 190 systems likely to be in the early stages of planetary system formation (ages up to about 10 Myr), probing the evolution of the circumstellar dust, the raw material for planetary cores. Candidate planetā€forming disks as small as 0.1 lunar masses will be detectable. Spectroscopy with IRS of new objects found in the surveys and of a select group of known objects will add vital information on the changing chemical and physical conditions in the disks and envelopes. The resulting data products will include catalogs of thousands of previously unknown sources, multiwavelength maps of about 20 deg^2 of molecular clouds, photometry of about 190 known young stars, spectra of at least 170 sources, ancillary data from groundā€based telescopes, and new tools for analysis and modeling. These products will constitute the foundations for many followā€up studies with groundā€based telescopes, as well as with SIRTF itself and other space missions such as SIM, JWST, Herschel, and TPF/Darwin

    Characteristics of a Delayed System with Time-dependent Delay Time

    Full text link
    The characteristics of a time-delayed system with time-dependent delay time is investigated. We demonstrate the nonlinearity characteristics of the time-delayed system are significantly changed depending on the properties of time-dependent delay time and especially that the reconstructed phase trajectory of the system is not collapsed into simple manifold, differently from the delayed system with fixed delay time. We discuss the possibility of a phase space reconstruction and its applications.Comment: 4 pages, 6 figures (to be published in Phys. Rev. E

    Correlated Errors in Quantum Error Corrections

    Full text link
    We show that errors are not generated correlatedly provided that quantum bits do not directly interact with (or couple to) each other. Generally, this no-qubits-interaction condition is assumed except for the case where two-qubit gate operation is being performed. In particular, the no-qubits-interaction condition is satisfied in the collective decoherence models. Thus, errors are not correlated in the collective decoherence. Consequently, we can say that current quantum error correcting codes which correct single-qubit-errors will work in most cases including the collective decoherence.Comment: no correction, 3 pages, RevTe

    Clarithromycin Susceptibility Testing of Mycobacterium avium Complex Using 2,3-Diphenyl-5-thienyl-(2)-tetrazolium Chloride Microplate Assay with Middlebrook 7H9 Broth

    Get PDF
    A series of 119 Mycobacterium avium complex isolates were subjected to clarithromycin susceptibility testing using microplates containing 2,3-diphenyl-5-thienyl-(2)-tetrazolium chloride (STC). Among 119 isolates, 114 (95.8%) were susceptible to clarithromycin and 5 were resistant according to the new and the standard method. STC counts the low cost and reduces the number of procedures needed for susceptibility testing
    • ā€¦
    corecore